(8x^4-2x^2+3x-5)-(2x^4+x^3+3x+5)=

Simple and best practice solution for (8x^4-2x^2+3x-5)-(2x^4+x^3+3x+5)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8x^4-2x^2+3x-5)-(2x^4+x^3+3x+5)= equation:


Simplifying
(8x4 + -2x2 + 3x + -5) + -1(2x4 + x3 + 3x + 5) = 0

Reorder the terms:
(-5 + 3x + -2x2 + 8x4) + -1(2x4 + x3 + 3x + 5) = 0

Remove parenthesis around (-5 + 3x + -2x2 + 8x4)
-5 + 3x + -2x2 + 8x4 + -1(2x4 + x3 + 3x + 5) = 0

Reorder the terms:
-5 + 3x + -2x2 + 8x4 + -1(5 + 3x + x3 + 2x4) = 0
-5 + 3x + -2x2 + 8x4 + (5 * -1 + 3x * -1 + x3 * -1 + 2x4 * -1) = 0
-5 + 3x + -2x2 + 8x4 + (-5 + -3x + -1x3 + -2x4) = 0

Reorder the terms:
-5 + -5 + 3x + -3x + -2x2 + -1x3 + 8x4 + -2x4 = 0

Combine like terms: -5 + -5 = -10
-10 + 3x + -3x + -2x2 + -1x3 + 8x4 + -2x4 = 0

Combine like terms: 3x + -3x = 0
-10 + 0 + -2x2 + -1x3 + 8x4 + -2x4 = 0
-10 + -2x2 + -1x3 + 8x4 + -2x4 = 0

Combine like terms: 8x4 + -2x4 = 6x4
-10 + -2x2 + -1x3 + 6x4 = 0

Solving
-10 + -2x2 + -1x3 + 6x4 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| (3x+3)+(15-3x)= | | 7(2n+2)=7(7n+7)+9 | | 4(q)+(-1)(1-q)=1(q)+2(1-q) | | -4n(6n-5)+3n= | | 5(x+3)=4x+14 | | 0.9x-5.3=0.1 | | (9x-6)+6= | | 2+-6m=-4m+10 | | -9(y-1)=2-8y | | -3x(x+5)-7=-8+10 | | 3a-(5-3a)=10 | | 4(q)+(-1)(1-q)=1q+2(1-q) | | 5x+-6=3x+-8 | | (3-x)+(x-4)=2(x+4) | | w=-125t+6000 | | -6+5(-9x-3)=-10 | | -6+(-9x-3)=-10 | | 24+r=28 | | 5p+8=-32 | | 2=-19+z | | 6m-4=4m | | 2=-4+k | | 18p^3-63p^2-9p=0 | | 4x^2+8x+48y-44=0 | | -7(2x-8)+3=-14x+59 | | 10-4=16 | | Q-3=25 | | F(x)=ln(x)*x^2 | | 66=10-8b | | K-12=11 | | b/2=-7 | | 4b+3a= |

Equations solver categories